ANGIO UPDATE 2024

15. und 16. März

pAVK: Interventionell

Sabine Steiner, Leipzig

Interessenkonflikte

 Vortragstätigkeit: Boston Scientific, Cook Medical

 Beratertätigkeit: Boston Scientific, Cook Medical, iThera Medical

Paclitaxel Mortalitätssignal

State of the Art Paclitaxel Mortalitätssignal

- Paclitaxel beschichteten Ballons/Stents (PCD, Paclitaxel coated devices):
- Erhöhte Spätmortalität (>2J) nach femoropoplitealer Intervention in RCTs
 - Erweiterte Aufklärungspflicht über Vorteile und Risiken der verfügbaren Behandlungsoptionen

FDA Executive Summary

Paclitaxel-Coated Drug Coated Balloon and Drug-Eluting Stent Late Mortality Panel, July 11th 2023

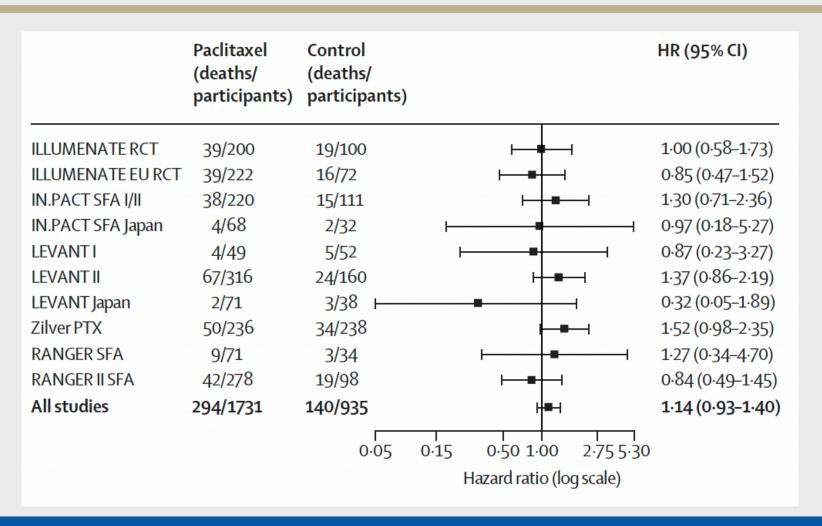
UPDATE: Paclitaxel-Coated Devices to Treat Peripheral Arterial Disease Unlikely to Increase Risk of Mortality - Letter to Health Care Providers

FDA Executive Summary

Paclitaxel-Coated Drug Coated Balloon and Drug-Eluting Stent Late Mortality Panel, July 11th 2023

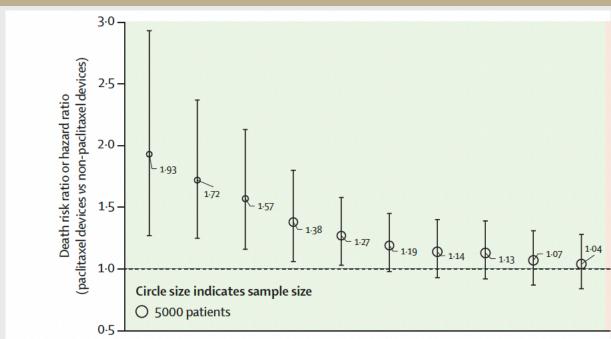
UPDATE: Paclitaxel-Coated Devices to Treat Peripheral Arterial Disease Unlikely to Increase Risk of Mortality - Letter to Health Care Providers

Auf der Grundlage der Überprüfung der Gesamtheit der verfügbaren Daten und Analysen durch die FDA haben wir festgestellt, dass die Daten kein übermäßiges Sterberisiko für Paclitaxel-beschichtete Produkte belegen.


Gepoolte Meta-analyse auf Patientenebene

Parikh SA et al. Lancet 2023;402:1848-1856

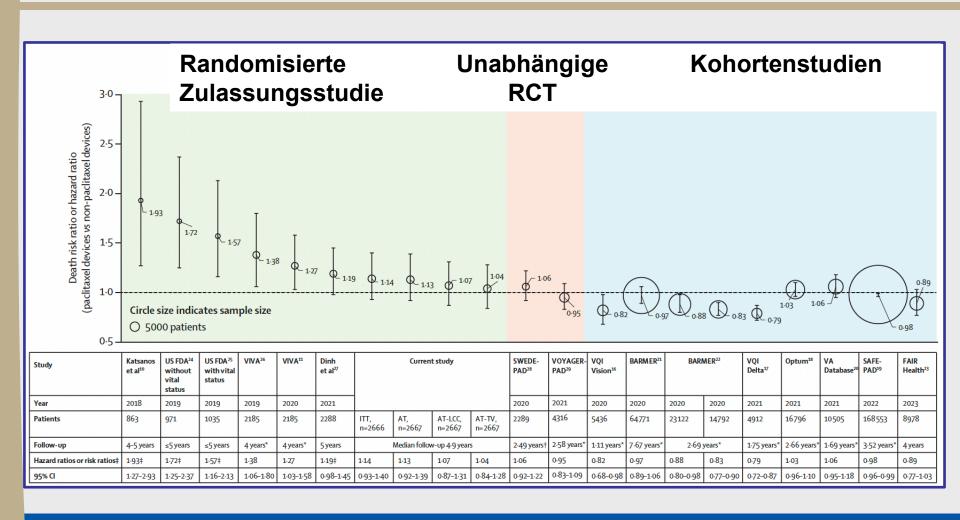
- 10 Zulassungsstudien für Paclitaxelbeschichtete Devices versus unbeschichtete Devices
- 2666 Teilnehmer, 434 Todesfälle
- Mittlere Nachbeobachtungszeit von 4 bis 9 Jahren
- 5 Jahres Follow-up bei 95% vorhanden


Gepoolte Meta-analyse auf Patientenebene: Intention to treat

Parikh SA et al. Lancet 2023;402:1848-1856

Gepoolte Meta-analyse auf Patientenebene

Parikh SA et al. Lancet 2023;402:1848-1856



Study	Katsanos et al ¹⁰	US FDA ²⁴ without vital status	US FDA ²⁵ with vital status	VIVA ²⁶	VIVA ¹¹	Dinh et al ²⁷	Current study			
Year	2018	2019	2019	2019	2020	2021				
Patients	863	971	1035	2185	2185	2288	ITT, n=2666	AT, n=2667	AT-LCC, n=2667	AT-TV, n=2667
Follow-up	4-5 years	≤5 years	≤5 years	4 years*	4 years*	5 years	Median follow-up 4-9 years			
Hazard ratios or risk ratios‡	1.93‡	1.72‡	1.57‡	1.38	1.27	1.19‡	1.14	1.13	1.07	1.04
95% CI	1.27-2.93	1.25-2.37	1.16-2.13	1.06-1.80	1.03-1.58	0.98-1.45	0.93-1.40	0.92-1.39	0.87-1.31	0.84-1.28

ITT Intention to treat
AT As treated (PTX at
index procedure)
AT-LCC As treated, late
cross over censored
AT-TV As treated, timevarying late crossover

Gepoolte Meta-analyse auf Patientenebene

Parikh SA et al. Lancet 2023;402:1848-1856

Fazit für Klinik und Praxis

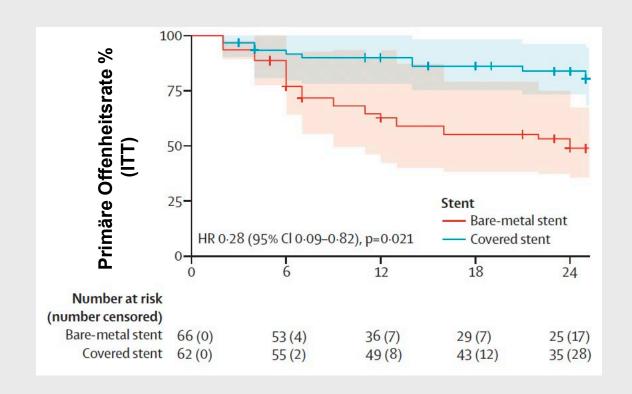
- Kein relevantes Signal für erhöhte Langzeit-Mortalität nach Paclitaxelfreisetzenden Devices
- Basierend auf randomisierten Studien mit verbesserten FU und großen Beobachtungsstudien
- FDA: frühere Warnhinweise aufgehoben

Intervention der Mesenterialgefäße

State of the Art Verschlussprozesse Viszeralgefäße

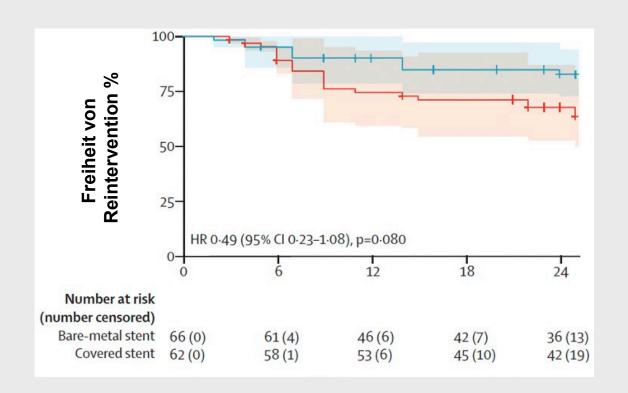
- Meist endovaskuläre Versorgung mittels Stentimplantation (weniger invasiv, geringere 30-Tages Mortaltität)
- In-Stent Restenose häufig: ca. 50% nach 3 Jahren bei Bare-Metal-Stent (BMS) Implantation
- Keine direkte Vergleichsstudien zu gecoverten Stents (covered stent, CS)

CoBaGi Studie


Rocha-Terlouw LG. et al. Lancet Gastroenterol Hepatol 2024; Published Online January 29, 2024

Multizentrische, niederländische Studie

- Chronische Mesenterialischämie: Multidisziplinäres Team aus Gastroenterologen, interventionellen Radiologen und Gefäßchirurgen
- 94 Patienten randomisiert zu BMS vs.
 CS (128 Stents)
- 1°: Primäre Offenheit nach 24 Monaten


CoBaGi Studie

Rocha-Terlouw LG. et al. Lancet Gastroenterol Hepatol 2024; Published Online January 29, 2024

CoBaGi Studie

Rocha-Terlouw LG. et al. Lancet Gastroenterol Hepatol 2024; Published Online January 29, 2024

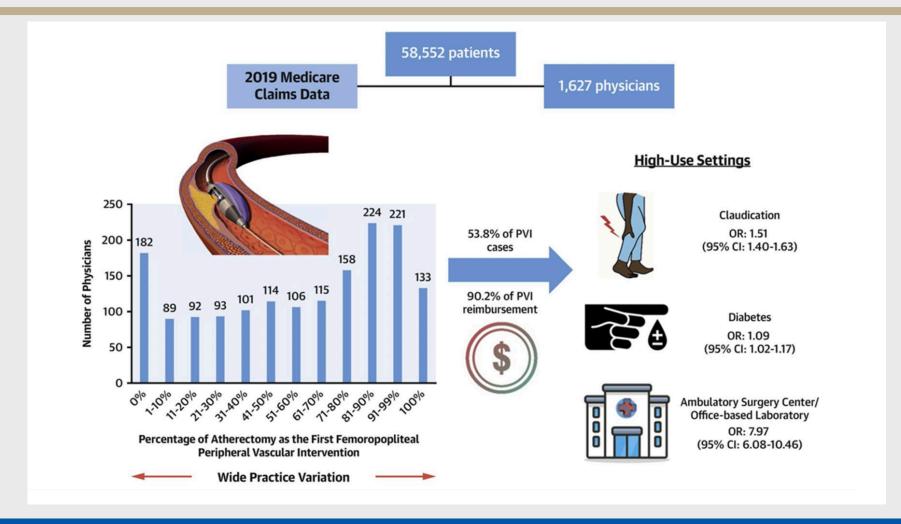
Fazit für Klinik und Praxis

- Chronische Mesenterialischämie (Truncus coeliacus, A. mes. superior)
- Deutlicher Vorteil einer Revaskularisation mittels gecoverten Stent in Hinblick auf
 - Offenheit, Wiedereingriff, Symptome
- Indikationsstellung im Team

Femoropopliteale Intervention

State of the Art

- Atherektomie zur Plaque Entfernung
 - Direktionale Atherektomie
 - Laseratherektomie
 - Rotationsatherektomie
 - Orbitale Atherektomie
- Plaquemodifikation
 - Lithotripsie
 - Scoring Ballon
 - Spur Stent

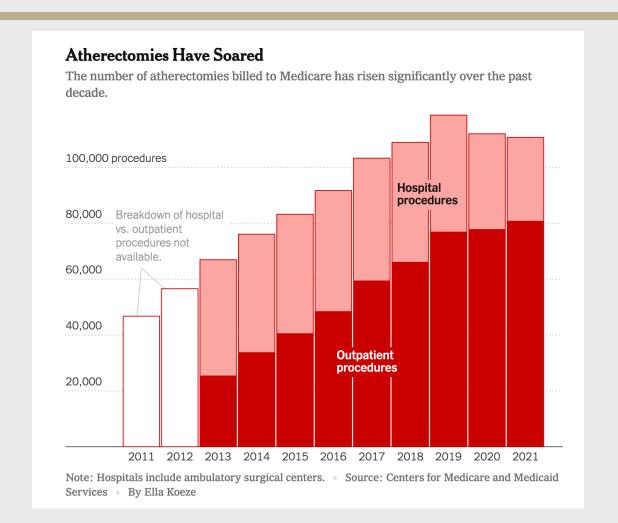

State of the Art

- Technischer Erfolg und akute Sicherheit
- + bei starker Verkalkung, Vermeidung von Barotrauma und Stent Implantation
- Embolierisiko bei Atherektomie (untersch.)
- Klinische Effektivität in einarmige Studien
- Direkte Vergleichsstudien eingeschränkt verfügbar
- Expertise des Interventionsteams essentiell

10

Einsatz der Atherektomie (USA)

Hicks CW. et al. JACC Cl. 2021;14;678-88

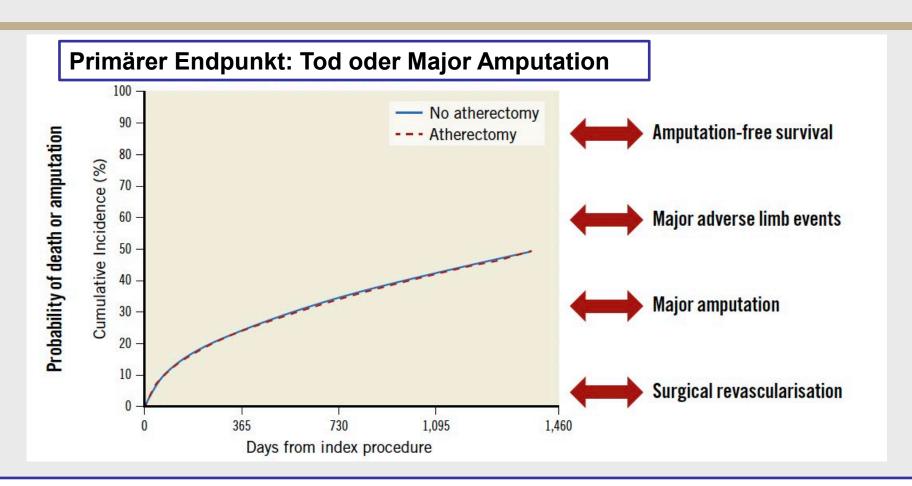

New York Times Artikel

https://www.nytimes.com/2023/07/15/health/atherectomy-peripheralartery-disease.html

Überbehandlung in den USA

https://www.nytimes.com/2023/07/15/health/atherectomy-peripheralartery-disease.html

US Registerstudie Atherektomie


Krawisz AK et al. Eurointervention 2023;18:e1378

Medicare Patienten (n=168.553) mit FP Intervention 2015-2018

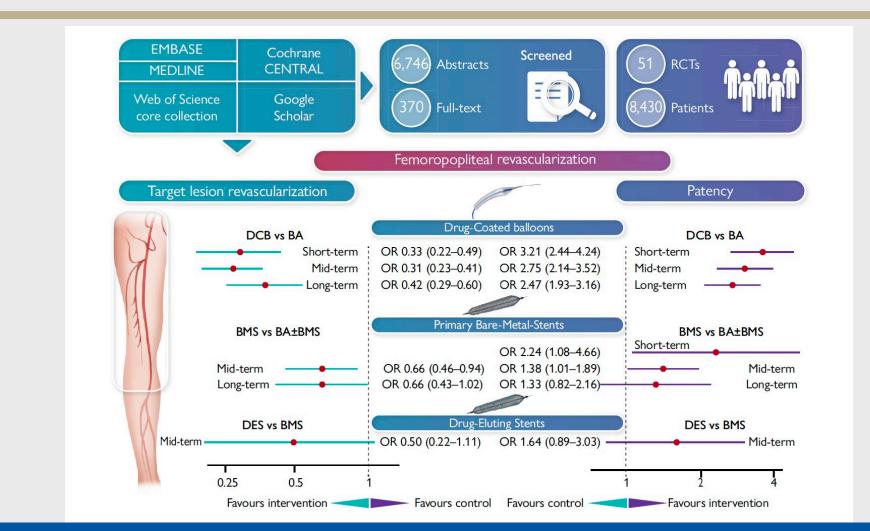
- 35,1% Atherektomie
- Mediane Nachbeobachtung 993 Tage
- Adjustierte Analyse

US Registerstudie Atherektomie

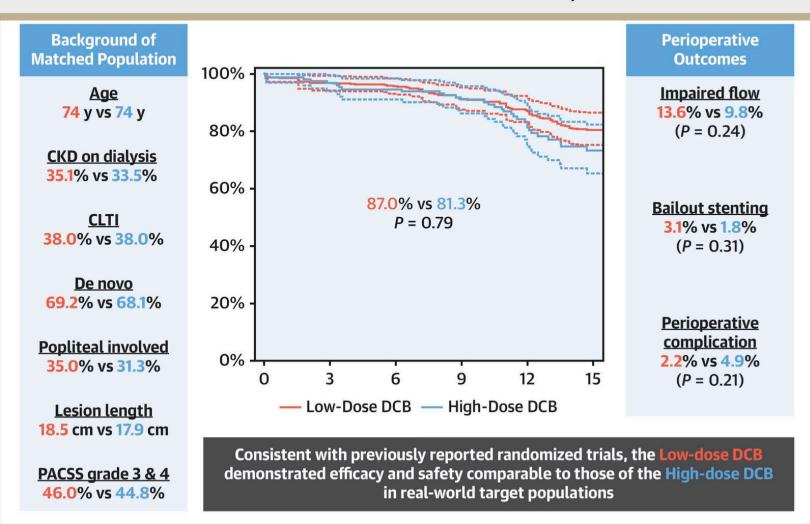
Krawisz AK et al. Eurointervention 2023;18:e1378

Neuerliche periphere endovaskuläre Intervention: aHR 1.19, 95% CI: 1.16-1.21

Registerstudie: Benefit von IVUS


Setogawa N et al. Circ Cardiovasc Interv 2023;16:e012451

Propensity Score gematchte Analyse von 85 649 Japanischen Patienten, davon 59.5% mit IVUS gesteuerter Intervention


Meta-analyse: FP Intervention bei Claudicatio

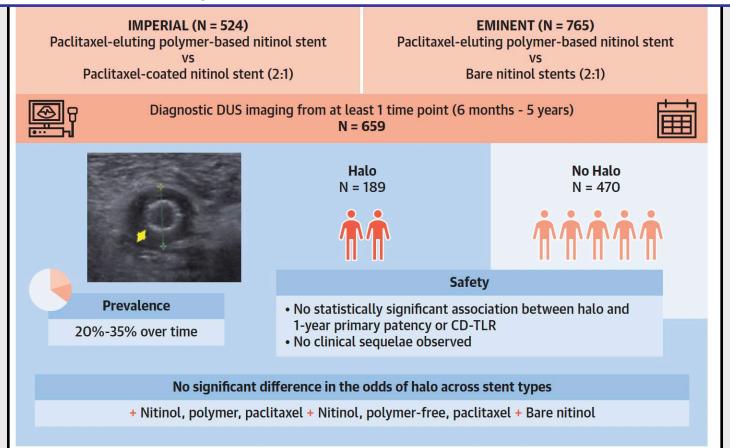
Koeckerling D et al. Eur Heart J 2023;44:935-950.

PROSPECT MONSTER: Hochdosis vs. Niedrigdosis DCB

Nakama T et al. JACC Cardiovasc Interv 2023;16:2655-2665

5-Jahres Ergebnisse nach komplexer Paclitaxel PTA

Tepe G et al. JACC Cardiovasc Interv 2023 May, 16 (9) 1065-1078


	<i>De novo</i> ISR n = 132	Long Lesion ≥15 cm n = 158	CTO ≥5 cm n = 127					
	Baseline Lesion Characteristics							
Lesion Length	17.1 cm	26.4 cm	22.8 cm					
Occlusions	33.8%	60.0%	100.0%					
Calcification	59.4%	72.0%	71.2%					
	Freedom from All-Cause Mortality							
	81.4%	75.2%	78.2%					
F: V	Freedom from CD-TLR							
Five-Year Outcomes	58.0%	67.3%	69.8%					
	Participants with >1 TLR							
	15.9%	9.5%	5.5%					
	Safety Composite (freedom from an event*)							
	56.0%	65.7%	69.8%					

^{*}Defined as freedom from device- and procedure-related death to 30 days, freedom from target limb amputation within 60 months, and freedom from clinically driven target vessel revascularization within 60 months.

Halo Phänomen nach FP Stenting

Holden A et al. JACC Cardiovasc Interv 2023;16:1654-1664.

Ultraschall Core lab Analyse im Rahmen der IMPERIAL und EMINENT Studien

Fazit für Klinik und Praxis

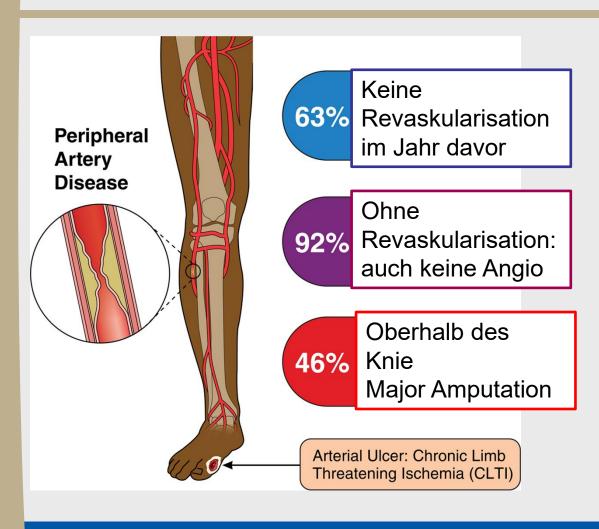
- Kein erhöhtes Amputationsrisiko nach Atherektomie, Langzeitbenefit unklar
- IVUS: Benefit in großen int. Registern
- Beste Endo Behandlungsoption der AFS: Drug-eluting Technologien
- Halo Phänomen: derzeit kein Hinweis für klinische Relevanz

Chronische Extremitäten bedrohenden Ischämie und Infrapopliteale Intervention

State of the Art

- Häufig Mehr-Etagen Erkrankung mit infra-poplitealer Beteiligung
- Endovaskuläre Revaskularisation:
 Akutergebnisse deutlich verbessert,
 aber kaum neue Technologie mit verbesserter Langzeitoffenheit
- Prognose weiterhin sehr schlecht

Amputationsraten in den USA

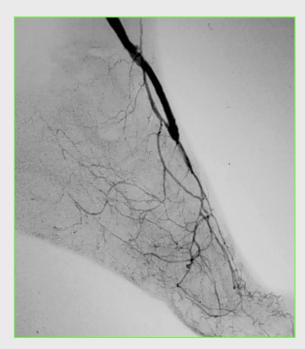

Secemsky EA et al. Circ Cardiovasc Interv 2024;17:e012798

Medicare Patienten (n=7.885) mit CLTI und Major Amputation 2016-2019

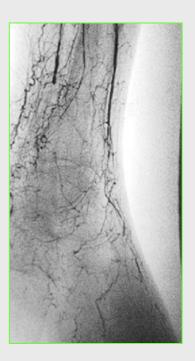
- Patienten-, Krankenhaus- und geografischen Merkmale und Intensität der vaskulären Versorgung
- Analyse Gesamtmortalität und unerwünschte Ereignisse nach Amputation

Amputationsraten in den USA

Secemsky EA et al. Circ Cardiovasc Interv 2024;17:e012798



Hohe Intensität der gefäßmedizinischen Versorgung (36.7%) war mit niedriger 2-Jahres Mortalität verbunden


Basil-2 Studie

Bradbury AW et al. Lancet 2023;401:1798-1809

Bypass

Endo

Für Infrapopliteale Erkrankung

Bradbury AW et al. Lancet 2023;401:1798-1809

Pragmatische, offene, multizentrische, klinische Phase-3-Studie

41 gefäßchirurgische Einrichtungen im Großbritannien (n=39), Schweden (n=1) und Dänemark (n=1)

Patienten

CLTI aufgrund einer atherosklerotischen Erkrankung Lebenserwartung >6 Monate Keine formale Risikobewertung Fördervolumen rund 2 Millionen £

Bradbury AW et al. Lancet 2023;401:1798-1809

Pragmatisches Design: Endovaskuläre und operative Techniken gemäß lokaler Standardversorgung

Best Bypass (VB): Jede als geeignet erachtete Vene kann verwendet werden; keine Vene: im Ermessen des Chirurgen Verwendung von prothetischen Material

Best Endo (BET): POBA

DCB

BMS, DES

Atherektomie war erlaubt, wurde aber nicht verwendet

Bradbury AW et al. Lancet 2023;401:1798-1809

Juli 2014 - November 2020

345 Patienten

65 [19%] Frauen und 280 [81%] Männer

Medianes Alter 72.5 Jahre [IQR 62.7-79.3]

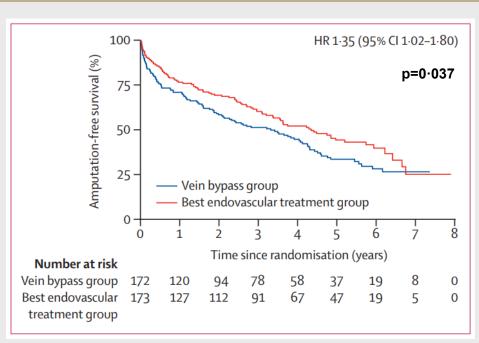
Nach dem Zufallsprinzip zugewiesen:

172 (50%) der VB-Gruppe

173 (50%) der BET-Gruppe

Nachbeobachtung: 40-0 Monate [IQR 20-9-60-6])

200 primäre Ergebnisereignisse


Bradbury AW et al. Lancet 2023;401:1798-1809

	Vein bypass group (n=172)	Best endovascular treatment group (n=173)
Früherer Myokardinfarkt Bildgebung	41 (24%)	23 (13%)
Duplex ultrasound	39 (23%)	37 (21%)
MRA	34 (20%)	43 (25%)
CT angiography	44 (26%)	45 (26%)
DSA	50 (29%)	44 (25%)

Bradbury AW et al. Lancet 2023;401:1798-1809

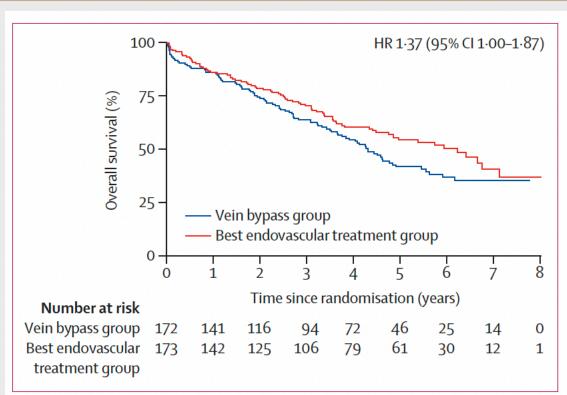
	Bypass	Endo			
Primär Bypass erhalten, N	145	5			
Technischer Erfolg, N (%)	137 (96)	4 (80)			
Fehlend	2	0			
Conduit, N (%)					
Ipsi-GSV reversed	70 (49)	1 (20)			
Ipsi-GSV non-reversed	48 (34)	4 (20)			
Contra-GSV reversed	7 (5)	0 (-)			
Primär endovaskulär behandelt, N	10	165			
Technischer Erfolg, N (%)	7 (78)	130 (87)			
POBA	6	136			
Anzahl der behandelten Infrapoplitealen Gefäße, N (%)					
1 Infrapopliteales Gefäß	5 (83)	86 (65)			
2 Infrapopliteales Gefäße	1 (17)	43 (33)			
3 Infrapopliteales Gefäße	0 (-)	2 (2)			

Bradbury AW et al. Lancet 2023;401:1798-1809

Medianes Amputationsfreies Überleben

➤ Vene: 3-3Jahre

[IQR 2·1-4·3]


➤ Endo: 4·4 Jahre

[IQR 3·4-5·9]

No AFS-N/N (%)	VB	BET	Hazard Ratio ¹ (95% CI)
ITT Analysis	108/172 (63)	92/173 (53)	1.35 (1.02 to 1.80)
Per-protocol analysis	88/145 (61)	90/165 (55)	1.30 (0.94 to 1.80)
As-treated analysis	89/150 (59)	98/175 (56)	1.16 (0.87 to 1.56)

Erhöhtes Risiko für Tod oder Amputation in der Bypass Gruppe

Bradbury AW et al. Lancet 2023;401:1798-1809

Todesursachen

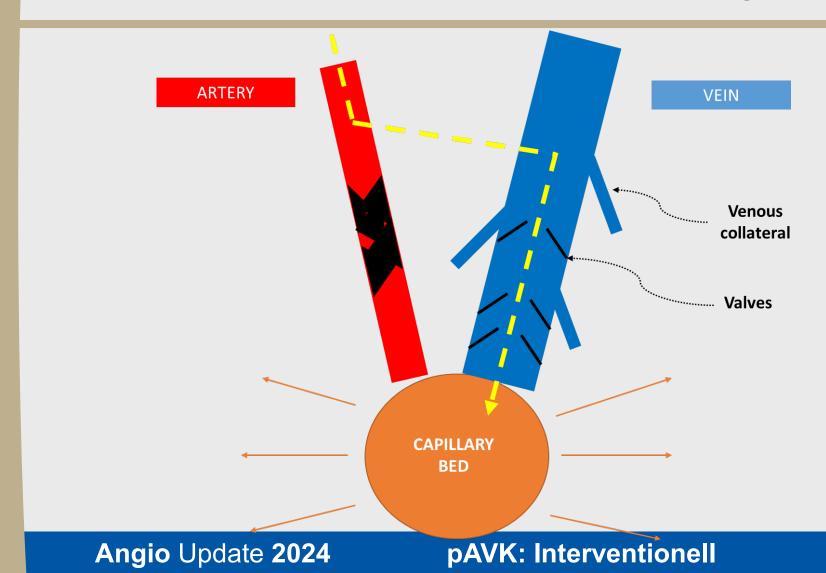
- ➤ Kardiovaskulär (61 VB vs 49 BET)
- Respiratorische Ursachen (25 VB and 23 BET)
- ➤ In keiner der beiden Studiengruppen wurden spezifische Todesursachen festgestellt, die die Unterschiede in der Zahl der Todesfälle zwischen den Gruppen erklären könnte

Weniger Todesfälle in der Endo Gruppe im Zeitverlauf

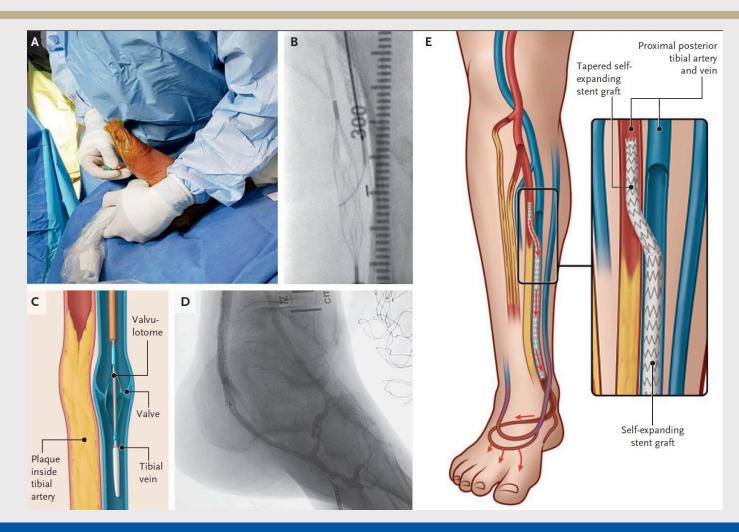
Fazit für Klinik und Praxis

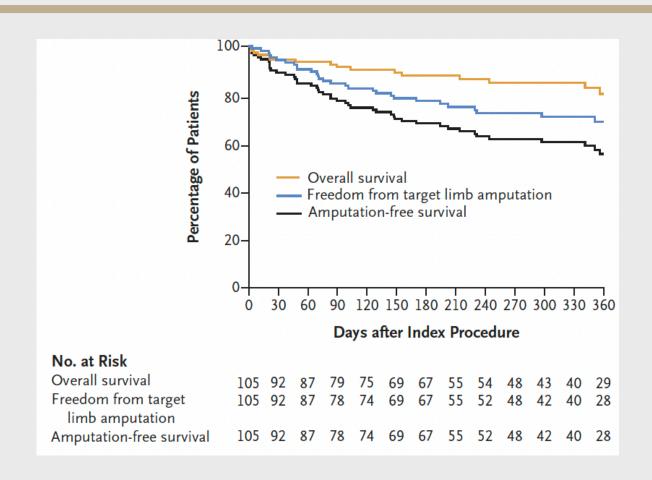
- Angestrebte Ereigniszahlen nicht erreicht. Unsicherheit der Ergebnisse, aber sehr unwahrscheinlich, dass Bypass besser abschneidet als Endo
- Lokale Expertise, Patientenpräferenzen, Verfügbarkeit, wirtschaftliche Überlegungen sollen bei der klinischen Entscheidungsfindung berücksichtigt werden
- Wert multidisziplinärer Teams!!!
- BASIL-2 Patienten: kleine Untergruppe aller CLTI-Patienten
- Zusätzliche Analysen von BASIL-2 und mit BEST-CLI sind in Arbeit
- Gefährdete Patientengruppe: Ergebnisse im Allgemeinen schlecht! Vergleichbar mit Basil-1 vor über 20 Jahren!

pAVK: Interventionell

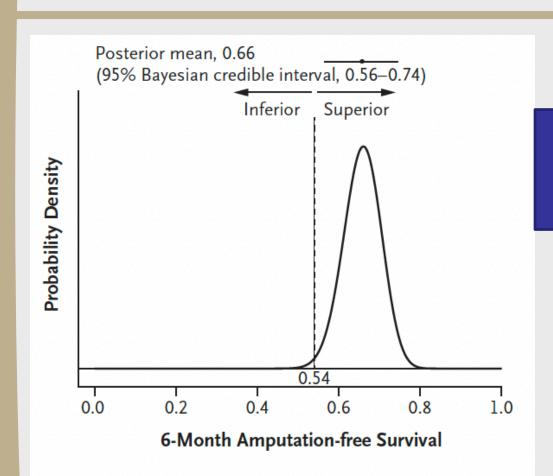

No option Patienten

- "Desert foot"
- Massive infrapopliteale Verkalkungen
- Keine endovaskuläre/gefäßchirurgische
 Option der Revaskularisation
- Häufige Patienten mit chronischer Dialyse

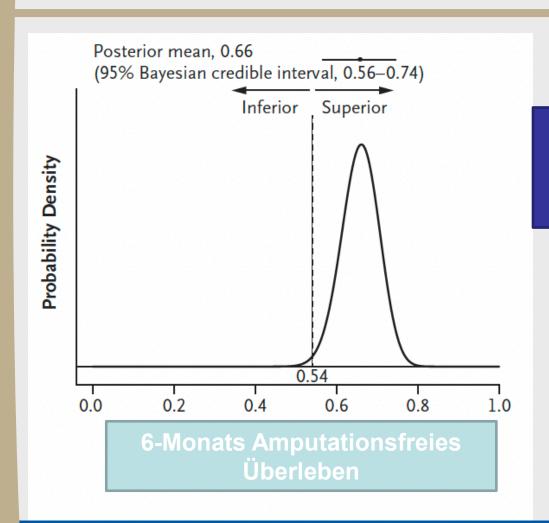

Konzept der Deep Venous Arterialization (DVA)


Shishehbor MH et al. N Engl J Med 2023;388:1171-1180

- Multizentrische Studie zur endovaskulären Arterialisierung des tiefen Venensystems
- 105 Patienten, Rutherford 5 (65%) und 6 (35%), keine Revaskularisierungsoption
- Medianes Alter 70 Jahre (38-89 Jahre)
- Chronische Dialyse 18%
- Technische Erfolgsrate 99%


Shishehbor MH et al. N Engl J Med 2023;388:1171-1180

Shishehbor MH et al. N Engl J Med 2023;388:1171-1180



Shishehbor MH et al. N Engl J Med 2023;388:1171-1180

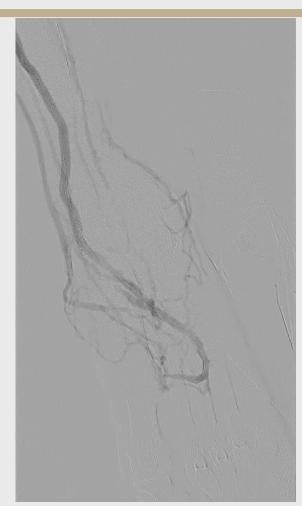
Major Amputation
23/102 Patienten
Tod
12/102 Patienten

Shishehbor MH et al. N Engl J Med 2023;388:1171-1180

Major Amputation
23/102 Patienten
Tod
12/102 Patienten

pAVK: Interventionell

Endovaskulären Arterialisierung des tiefen Venensystems


Post-Interventionelle Vorfuß-Schwellung

Wundversorgung!

Verschlechterung der Perfusion im Zehenbereich

Vermeidung von Major Amputation

FDA Zulassung erfolgt

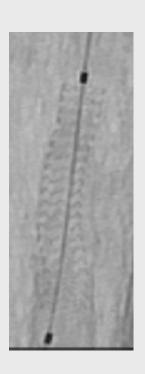
Endovaskulären Arterialisierung des tiefen Venensystems

Post-Interventionelle Vorfuß-Schwellung

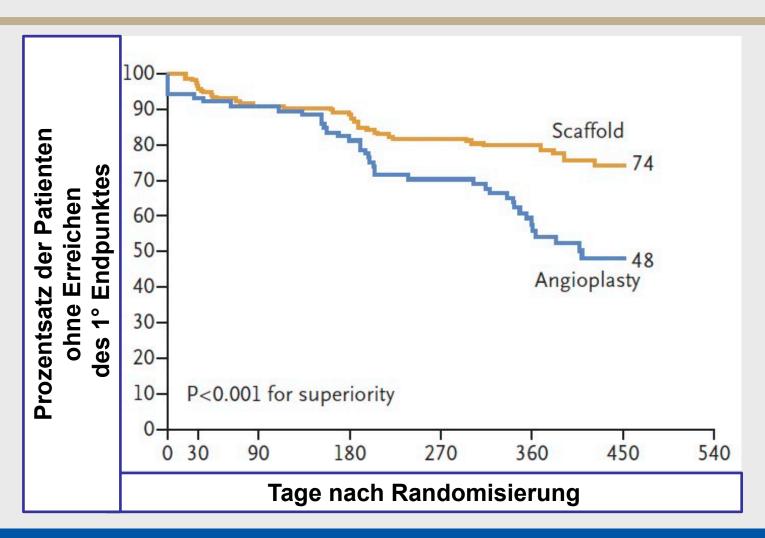
Wundversorgung!

Verschlechterung der Perfusion im Zehenbereich

Vermeidung von Major Amputation


FDA Zulassung erfolgt

LIFE BTK


Varcoe RL et al. N Engl J Med 2023;388:1171-1180

- 261 CLTI Patienten
- 2:1 Rx: Everolimus freisetzender, bioresorbierbarer Scaffold vs. PTA
- 1° Endpunkt: Amputation oberhalb des Knöchels der Zielgliedmaße, Verschluss des Zielgefäßes, klinisch bedingte Revaskularisierung der Zielläsion und binäre Restenose der Zielläsion nach 1 Jahr

LIFE BTK

Varcoe RL et al. N Engl J Med 2023;388:1171-1180

Fazit für Klinik und Praxis

- Endovaskuläre Arterialisierung des tiefen Venensystems für no option Patienten
- Neue drug-eluting, bioresorbierbare
 Stents mit guten Ergebnisse
- Optionen für langstreckigen Läsionen?

Intervention bei Takayasu Arteritis

Endo bei Takayasu Arteritis

Joseph G et al., J Am Coll Cardiol. 2023;81:49-64

- Prospektive Kohortenstudie 1996-2022:
 942 Patienten mit 2450 Läsionen
- 630 subclavial/axillär, 586 renal, 463 aortal, 333 Carotis, 188 mesenterial, 116 iliakal, 71 koronar; 63 andere
- Gute Ergebnisse insbesondere für Stent-basierte Interventionen (covered>bare metal)

pAVK: Interventionell

Endo bei Takayasu Arteritis

Joseph G et al., J Am Coll Cardiol. 2023;81:49-64

Erkrankungs aktivität

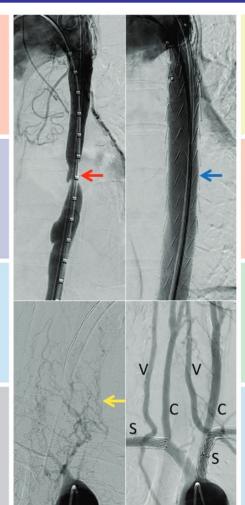
Weiche

Plaques

Disease activity

- Avoid intervention in active disease
- In urgent situations, perform intervention and ensure rapid control of disease activity

Soft lesion


- Mild wall thickening, not ostial or calcific, recentonset symptoms, young patient
- Balloon angioplasty, stenting if result is suboptimal

Resistant lesion

- Marked wall thickening, ostial or calcific, chronic lesion, older patient
- Elective stenting: covered stent if aortic, iliac or aortoostial; bare stent elsewhere

Restenotic lesion

- Repeated balloon dilatation until sustained success is obtained
- Greatest benefit with first redilatation, less with subsequent ones

Aortic lesion

- Endograft in descending or upper abdominal aorta
- Braided self-expanding stent in visceral aorta
- Covered stent for infra-renal aortic occlusions

Aorto-ostial lesion

- Renal, mesenteric, and arch branch short ostio-proximal lesions
- Elective stenting using balloon-expandable covered stents

Carotid lesion

- Balloon angioplasty, selfexpanding bare stent if result is suboptimal
- Staged revascularization if multiple arch branches are severely obstructed

Subclavian lesion

- Balloon angioplasty, selfexpanding bare stent if result is suboptimal
- Best results in lesions <8 cm in length; consider avoiding longer lesions

Restenotische Läsion

Fibrotische

Plaques

pAVK: Interventionell